Tools required:

- Allen wrench set (inch)
- Flat blade screwdriver (potentiometer & terminal size)
- Screwdriver (Phillips size 2)
- Tape ruler
- Power drill
- Center punch
- Wire stripper
- #7 drill 1/4-20 tap (metal frame install)
- Ø3/8 drill (door sex bolt install)

Use screw pack and hardware provided to mount operator.

WARNING: To reduce the risk of injury to person, use this operator only with Pedestrian Swing doors. For Indoor Use Only.

ETL certified; conforms to ANSI/UL standard 325 for automatic closing doors and UL10C Positive Pressure Fire Test for Door Assemblies. Certified to ANSI/BHMA A156.19 for Low Energy Door Operators.
General Information

Operation:

Your Low Energy Operator can be configured in three variations to meet the standards:

1. Push plates, Wave-to-open switches, etc. are available to activate the operator.
2. Push & Go can be enabled. In this mode, your door is pushed (or pulled) slowly 15° manually, and then automatically opens to full open position.
3. Door can be used as a manual door. The door will work and act like a standard door closer, with or without power, when pushed or pulled open manually. If Push & Go is enabled and door is opened quickly, door will function as a manual door (energy save feature). Push plates are still active.

If desired, overhead presence devices can be provided for an extra level of protection. Consult local authority having jurisdiction. These are not required by current ANSI/BHMA A156.19 standards.

Opening:

When an opening signal is received by the control unit, the door opens to the fully open position. The open position is held by the motor and is adjustable from 0 to 30 seconds. If the door is obstructed while opening, the door will stop; the operator will sense obstruction (obstruction time is adjustable from 0 to 5 seconds) and the door will close.

Note: Door must be visible by person operating activation switch(es). Auxiliary door stop (by others) required.

Closing:

When the hold open time has elapsed, the door closer will close the door automatically. The door will slow to low speed at latch before it reaches the fully closed position. The door is kept closed by spring force of the closer. If the door is obstructed while closing, the door will stop against the obstruction; the operator will sense obstruction and re-open to fully open position after obstruction time has been reached. Once the hold open time has elapsed a second time, the door closer will close the door automatically. If the door is obstructed during this second closing cycle, the door will stop and rest against the obstruction using only the force of the closer spring. To reset, allow door to fully close and re-activate push plates to test operation.

Extended Hold Open:

An optional feature to be used if door is desired to be held open for more than 30 seconds.

Set switch on end cap on the latch side of the operator to hold open. Door will immediately begin to open to the fully open position. Once door is fully open, brake on end of motor energizes holding door in open position. To release from hold open, if door is set up for executive operation (see page 15 for wiring instructions), door can be closed with activation device. A pull on the door will also allow the unit to be taken out of hold open. Once door has closed, the door will reopen to fully open position unless activation device is pressed or 3-position is changed from Hold Open position.

Note: Door must be visible by person operating activation switch(es). Auxiliary door stop (by others) required.

WARNING: Make sure that (120V, 60Hz) input power is turned off at facility’s main circuit breaker before proceeding with installation.

For assistance, contact Norton Technical Product Support at 800-438-1951 Ext 6030.
Door Prep

Hollow Metal Door Frame Reinforcing

<table>
<thead>
<tr>
<th>Frame Material</th>
<th>Reinforcing</th>
<th>Min. Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Ga. .1046 (2.66)</td>
<td>12 Ga. .1046 (2.66)</td>
<td>18 Ga. .0478 (1.21)</td>
</tr>
<tr>
<td>14 Ga. .0747 (1.90)</td>
<td>10 Ga. .1343 (3.41)</td>
<td>12 Ga. .1046 (2.66)</td>
</tr>
<tr>
<td>16 Ga. .0598 (1.52)</td>
<td>10 Ga. .1343 (3.41)</td>
<td>12 Ga. .1046 (2.66)</td>
</tr>
<tr>
<td>18 Ga. .0478 (1.21)</td>
<td>8 Ga. .1644 (4.18)</td>
<td>10 Ga. .1343 (3.41)</td>
</tr>
</tbody>
</table>

Fasteners for Frame:
- 1/4-20 Machine screws for hollow metal and aluminum.
- No. 14x2-3/4” (70mm) long sheet metal screws for wood.

Templating is based on 1/8” gap between door and frame.

Notes:
- All dimensions are given in inches.
- Thickness recommended for reinforcements in hollow metal doors and frames is charted at the left of this page.
- Do not scale drawing.
- This template information based upon use of 5” maximum width butt hinges.
- Maximum frame reveal is 4-3/4” for 6060 units and 4-13/16” up to 7-3/8” maximum for 6070 units.
- Before beginning the installation, verify that the door frame is properly reinforced and is well anchored in the wall.
- Unreinforced hollow metal frames and aluminum frames should be prepared and fitted with 1/4-20 blind rivet nuts, furnished by others.
- Concealed electrical conduit and concealed switch or sensor wires should be pulled to the frame before proceeding.

Technical Data

<table>
<thead>
<tr>
<th>Input power:</th>
<th>120VAC, 60Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption:</td>
<td>.9 amps</td>
</tr>
<tr>
<td>Circuit breaker:</td>
<td>3 amps</td>
</tr>
<tr>
<td>Power supply:</td>
<td>24 V DC, max. 2.2 Amp.</td>
</tr>
<tr>
<td>Door width:</td>
<td>28 - 48" (71-122 cm)</td>
</tr>
<tr>
<td>Door weight:</td>
<td>100-250 lb. (45-113 kg)</td>
</tr>
<tr>
<td>Door opening angle:</td>
<td>see Page 1</td>
</tr>
<tr>
<td>Hold open time:</td>
<td>0-30 seconds (A.D.A. 5 seconds min.)</td>
</tr>
</tbody>
</table>

Rate of operation shall not exceed 300 cycles of opening and closing per hour.

Notes:
- Permanent wiring is to be employed as required by local codes.
- Activation devices: push plates, access control, mats, touchless wall switches, etc.

Maximum wire size:
- 12AWG at terminals LINE and NEUTRAL (120VAC; 60Hz) on Power Input Terminal mounted on inside of end cap.
- 14AWG at all other terminals.

Standards

ETL Certified: conforms to ANSI/UL standard 325 for automatic closing doors and UL10C Positive Pressure Fire Test for Door Assemblies.

ANSI A156.19:
These products are designed to conform to this specification “for power assist and low energy power operated doors.” These products are designed to exceed all the requirements for the “Low Energy Power Operated Door.”

Americans with Disabilities Act (A.D.A.)
These door operators can be installed and adjusted to conform with A.D.A. regulations.

ANSI A117.1:
These door controls permit door assemblies to conform to the requirements of this specification “for buildings and facilities - providing accessibility and usability for physically handicapper people.”

—

Copyright © 2017 Yale Security Inc., an ASSA ABLOY Group company. All rights reserved. Reproduction in whole or in part without the express written permission of Yale Security Inc. is prohibited.
IMPORTANT INSTALLATION INSTRUCTIONS

1) READ AND FOLLOW ALL INSTALLATION INSTRUCTIONS.
2) Install only on a properly operating and balanced door. A door that is operating improperly could cause severe injury. Have qualified service personnel make repairs to any hardware before installing the operator.
3) Remove, or make inoperative, all locks (unless mechanically and/or electrically interlocked to the power unit) that are connected to the door before installing the operator.
4) Do not connect the door operator to the source power until instructed to do so.

1a) Initial Frame Holes

Left hand door illustrated.

A. Using template, locate and prepare holes in the frame.
B. Drill #7 and tap 1/4-20 Machine Screws or Self Drilling Screws (2 places).

<table>
<thead>
<tr>
<th>Door Opening Angle</th>
<th>Dim “A”</th>
</tr>
</thead>
<tbody>
<tr>
<td>85°</td>
<td>4-1/8”</td>
</tr>
<tr>
<td>90°</td>
<td>3-1/2”</td>
</tr>
<tr>
<td>95°</td>
<td>2-7/8”</td>
</tr>
<tr>
<td>100°</td>
<td>2-3/8”</td>
</tr>
<tr>
<td>105°</td>
<td>2-0”</td>
</tr>
<tr>
<td>110°</td>
<td>1-5/8”</td>
</tr>
</tbody>
</table>

1b) Initial Wall Prep

Blocking (supplied by others) is required for proper support of operator. Thickness is dependent upon Frame Return. Material must comply with local codes.
A. For wood framing, screw blocking into wall studs.
B. Lag anchoring required for masonry walls.

<table>
<thead>
<tr>
<th>Door Opening Angle</th>
<th>Dim “B” max</th>
<th>Dim “C” min</th>
</tr>
</thead>
<tbody>
<tr>
<td>85°</td>
<td>7”</td>
<td>21-3/4”</td>
</tr>
<tr>
<td>90°</td>
<td>6-3/8”</td>
<td>21-1/8”</td>
</tr>
<tr>
<td>95°</td>
<td>5-3/4”</td>
<td>20-1/2”</td>
</tr>
<tr>
<td>100°</td>
<td>5-1/4”</td>
<td>20-0”</td>
</tr>
<tr>
<td>105°</td>
<td>4-7/8”</td>
<td>19-5/8”</td>
</tr>
<tr>
<td>110°</td>
<td>4-1/2”</td>
<td>19-1/4”</td>
</tr>
</tbody>
</table>
1c Unpack Operator
A. Remove from box and unwrap operator. B. Remove (6) screws holding cover (save to be reused later) and remove cover.

2a Back Plate Mounting
A. Install (2) 1/4-20 x 1” screws into holes drilled in Step 1A. Leave 1/8” gap between bottom of screw head and frame.
B. Install Back Plate assembly over screws in previous step.
C. Secure (2) screws.

Note: Level is incorporated into back plate to aid in installation.

2b For Concealed Wiring Only
A. Mark conduit holes using back plate as template.
B. Remove back plate.
C. Drill (2) Ø7/8” holes.
D. Install conduit in frame, if desired.
E. Reinstall back plate and secure (2) screws.

3 Remaining Back Plate Screws
A. Drill #7 and tap 1/4-20 Machine Screws or Self Drilling Screws (7 places).
B. Install (7) 1/4-20 x 1” screws into holes drilled in Step 3A.
C. Support between back plate and wall is required (see Step 1b).

See page 24 for removable template.
4 Prep Door for Shoe

A. Using template, locate and prepare holes in door.

B. Drill 3/8" thru (2 places) for sex bolts.

<table>
<thead>
<tr>
<th>Door Opening Angle</th>
<th>Dim "B"</th>
</tr>
</thead>
<tbody>
<tr>
<td>85°</td>
<td>13-1/4"</td>
</tr>
<tr>
<td>90°</td>
<td>12-5/8"</td>
</tr>
<tr>
<td>95°</td>
<td>12-0"</td>
</tr>
<tr>
<td>100°</td>
<td>11-1/2"</td>
</tr>
<tr>
<td>105°</td>
<td>11-1/8"</td>
</tr>
<tr>
<td>110°</td>
<td>10-3/4"</td>
</tr>
</tbody>
</table>

5 Mount Adjusting Tube and Shoe Assembly on Door

A. Install sex bolts thru holes in back side of door (2 places) prepared in Step 4.

B. Orient shoe with short side of shoe toward hinge as shown in illustration. Install (2) 1/4-20 x 5/8" screws thru shoe and into sex bolts installed in Step 5A.
Assemble Arm to Pinion

A. i) Slide Adjusting Rod into Tube of Arm Slide and Tube Assembly. ii) Place square of Main Arm onto pinion with pinion flat and arm marking as shown below.

Secure Arm to Pinion

A. Attach arm with provided screw.
B. Tighten arm screw with 7/16" wrench.

Secure Adjusting Rod and Arm Slide Tube

A. Rotate Main Arm away from hinge until Adjusting Rod and Arm Slide Tube are perpendicular (at 90 degrees) with the door.
B. Secure with forearm screws.
9 Closer Spring Force Adjustment

Slowly increase closer power until door closes consistently.

NOTE: A closer set to the ADA required 5 lbs opening force may not be strong enough to close the door due to latching hardware, air pressure, or frame issues.

10 Mechanical Closer Adjustments

Closer Must function mechanically as a standard door closer before applying any electrical power.

Closing Speed Controls
- Valve "S" Controls Sweep Range from full open to 5°.
- Valve "L" Controls Latch Range from 5° to closed.

Opening Cycle
- Valve "B" controls the strength of cushioning in Backcheck Range. NEVER close this valve completely – it is not to provide a positive stop.
- Valve "P" adjusts the angle that backcheck is felt in the open cycle.

Note: Valve location S/D is not adjustable.

Do not remove valves from closer. Hydraulic oil will escape.

Never Close backcheck valve completely.
11 Incoming Power Connection

A. Pull wire thru Incoming Power conduit.
B. Strip insulation back 3/8” on Hot and Common Incoming Power wires.
C. Insert stripped end of wire into terminal.
D. Secure wire into terminal by turning screw using a small flat blade screw driver.
E. Attach ground wire to green ground screw.

12 Controller Interface

A. To power unit, flip switch on end cap furthest from the hinge from “OFF” to “ON” position.
B. To scroll thru menu items, push up or down on joystick.
C. To change setting of a menu item, when cursor is on that item, push joystick right to increase or left to decrease value.
D. Values will be auto-saved 3 seconds after adjustment.

See Page 12 for Controller Adjustment Options.
13 Set Home and Open Positions

A. With door closed and 3-position switch on end of back plate in the “OFF” position, use joystick to scroll down menu on LCD screen to “Home”.

B. Push in on joystick to activate menu feature. Display changes to “Set Close Limit”.

C. Push in on joystick again, while door is still closed, to set the Home or closed position. Display changes to “Set Open Limit”.

D. Open door to desired open position and push in on joystick again. Display changes to “Closing to Home”.

E. Allow door to fully close again. Display changes to “Home”.

F. Values will Auto-Save.

14 Connect Accessories and Make Necessary Controller Adjustments

See Page 12 for Controller Adjustments

See Pages 14 - 22 for Accessory Wiring Instructions

See Page 23 for Troubleshooting Guide

15 Install Cover and Label

A. If using Surface Mount power input ONLY, remove appropriate shaded area from cover, see illustration below. Repaint cut edges as necessary to prevent corrosion.

B. Place cover over unit and secure with (6) 6-32 screws taken out previously.

C. Attach label to cover as shown at right.
Controller Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short Circuit</td>
<td>A short was sensed on the motor outputs</td>
</tr>
<tr>
<td>Temperature Trip</td>
<td>Power module reached 200°F or greater (too much load in too hot ambient condition)</td>
</tr>
<tr>
<td>Over Voltage</td>
<td>Line Voltage has reached 145VAC or greater</td>
</tr>
<tr>
<td>Under Voltage</td>
<td>Line Voltage has dropped below 80VAC</td>
</tr>
<tr>
<td>Aux 1 Stuck</td>
<td>Activation device connected to Aux 1 is sending constant signal</td>
</tr>
<tr>
<td>Aux 2 Stuck</td>
<td>Activation device connected to Aux 2 is sending constant signal</td>
</tr>
<tr>
<td>Aux 3 Stuck</td>
<td>Activation device connected to Aux 3 is sending constant signal</td>
</tr>
<tr>
<td>Comm Error</td>
<td>No communication between top and bottom controller boards. Boards not functioning properly</td>
</tr>
<tr>
<td>Presence Detect</td>
<td>Device connected to Presence Detect and was activated</td>
</tr>
<tr>
<td>Drive Disabled</td>
<td>3-position switch on end cap closest to latch is in "OFF" position</td>
</tr>
</tbody>
</table>
Controller Interface Description

Screen 1

<table>
<thead>
<tr>
<th>Adjustments</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mount:</td>
<td>Push</td>
<td>Side of opening operator is mounted on</td>
</tr>
<tr>
<td>Hold Open:</td>
<td>4s</td>
<td>Amount of time door will stay in full open position.</td>
</tr>
<tr>
<td>Start Delay:</td>
<td>0s</td>
<td>Time before operator begins to open door. This is to allow accessories time to function and not hinder the opening of the door.</td>
</tr>
<tr>
<td>Latch Rtrct:</td>
<td>OFF</td>
<td>Amount of time power is supplied to a latch retraction device.</td>
</tr>
<tr>
<td>Home:</td>
<td>see Setting Open Position</td>
<td>Used to set the Home position and the Fully Open position of the door.</td>
</tr>
<tr>
<td>Vestibule:</td>
<td>OFF</td>
<td>Amount of delay for opening 2nd vestibule door</td>
</tr>
<tr>
<td>Push:</td>
<td>OFF</td>
<td>Turn on or off Push N Go feature. If On, a slight push or pull of the door starts it automatically opening.</td>
</tr>
<tr>
<td>Open Speed:</td>
<td>120</td>
<td>How fast the door opens to the full open position.</td>
</tr>
<tr>
<td>Close Speed:</td>
<td>80</td>
<td>How fast the motor returns to the home position. As Latch and Sweep on the closer are adjusted, adjustments may be needed for Close Speed to assure closer is not trying to backdrive the motor.</td>
</tr>
<tr>
<td>Errors:</td>
<td>not adjustable</td>
<td>Error code seen by controller. See Page 11 for Controller Error Codes.</td>
</tr>
</tbody>
</table>

Screen 2

<table>
<thead>
<tr>
<th>Adjustments</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door Feedback:</td>
<td>not adjustable</td>
<td>General feedback. Includes Door State, Door Position, Motor Position, Open Limit, Close Limit.</td>
</tr>
<tr>
<td>Drive Feedback:</td>
<td>not adjustable</td>
<td>General feedback. Includes Bus Voltage, Bus Current, Frequency.</td>
</tr>
<tr>
<td>Usage:</td>
<td>not adjustable</td>
<td>General feedback. Includes Open Time, Close Time, Days, Cycles, Firmware Rev.</td>
</tr>
<tr>
<td>Single:</td>
<td>Single</td>
<td>not functional - for future</td>
</tr>
<tr>
<td>MastStopOffset:</td>
<td>180</td>
<td>not functional - for future</td>
</tr>
<tr>
<td>PDET Option:</td>
<td>Off</td>
<td>On or Off for 585 Presence Detector</td>
</tr>
<tr>
<td>DT:</td>
<td>Stnd</td>
<td>Standard is Door Toggle. SS1 is not functional.</td>
</tr>
<tr>
<td>A2:</td>
<td>Stnd</td>
<td>Standard is Activation mode - just like A1 activation. Ss2 is not functional.</td>
</tr>
<tr>
<td>Rly2:</td>
<td>Alarm</td>
<td>How Relay 2 is used: Alarm - used with above Alarm Delay; Activation - acts as an additional NO/NC contact; On Opened - relay trips (closed contacts) when door is in opened position; On Closed - relay trips (closed contacts) when door reaches the fully closed position.</td>
</tr>
<tr>
<td>Alarm Delay:</td>
<td>OFF</td>
<td>Used only for alarm accessories</td>
</tr>
<tr>
<td>Slow Speed:</td>
<td>55</td>
<td>Speed up or slow down door during last few degrees of opening.</td>
</tr>
<tr>
<td>Hold Speed:</td>
<td>55</td>
<td>Increase or decrease hold open force (when in “ON” position only, not “H/O”) to compensate for spring force, wind conditions, etc.</td>
</tr>
<tr>
<td>Obst Delay:</td>
<td>3s</td>
<td>Obstruction Delay: the amount of time the operator will push against an obstruction before closing if during an opening cycle or reopening and trying to close again if during a closing cycle.</td>
</tr>
</tbody>
</table>
Factory Pre-Wiring of Connections and Incoming Wiring

To connect wiring:
- **Incoming 120VAC and 24VDC for accessories**
 - For 20 - 10 AWG wire
 - Strip end of wire 1/4 inch
 - Insert wire into appropriate position as shown at left and use flat head screw driver to secure
- **For Low Voltage / Dry Contacts on Inverter (above)**
 - For 24 - 16AWG wire
 - Strip end of wire 3/8 inch
 - Use flat blade screw driver to push down on white button above desired location, insert wire, release button. Pull on wire to confirm installed properly.
Basic Wiring Diagrams Using Factory Pre-Wired Connection

Standard Function with Switches
- Doors are normally closed.
- Activating either switch will open both doors. Door will close after hold open time delay has expired.

![Standard Function with Switches Diagram]

Fail Secure Electric Strike 24VDC Wiring
- Doors are normally closed and latched.
- Activating switch will unlock electric strike and door will automatically open. Door will close after hold open time delay has expired.
- The door will remain **locked** during power failure.

![Fail Secure Electric Strike 24VDC Wiring Diagram]
Fail Safe Electric Strike or Electromagnetic Lock 24VDC Wiring

Change Factory Pre-Wiring from Illustration A to Illustration B (move NO to NC)

A)

B)

Fail Safe Electric Strike 24VDC Wiring
- Doors are normally closed and latched.
- Activating switch will unlock electric strike or mag lock and door will automatically open. Door will close after hold open time delay has expired.
- The door will remain **unlocked** during power failure.
- Current draw at Power Outputs not to exceed 1.3 amps.

24VDC Electric Exit Device Wiring

24VDC Electric Exit Device Wiring
- Doors are normally closed and latched.
- Activating switch will energize exit device and door will automatically open. Exit device will stay energized based on Latch Rtrct setting. Door will close after hold open time delay has expired.
- Current draw at Power Outputs not to exceed 1.3 amps.

Factory Pre-Wiring in Illustration is for this functionality.
Electric Dogging Exit Device Wiring

Change Factory Pre-Wiring from Illustration A to Illustration B (move NO to +24)

- Electric Dogging Exit Device Wiring
 - Doors are normally closed and latched.
 - Turning key switch ON will apply power to the exit device.
 - The first depression on the device touchpad will electrically dog the device for push/pull operation.
 - The door will now open automatically when the wall switch is depressed.
 - The device will relatch during a power failure or when the key switch is turned off.
 - The exit device allows egress at all times. The exit device allows egress during power failures.
 - Current draw at Power Outputs not to exceed 1.3 amps.

Hard Wired Executive Function Wiring

Factory Pre-Wiring Not Required to Change

- Hard Wire Executive Function
 - Doors are normally closed.
 - Activating switch will open door.
 - The door will remain in indefinite hold open until activating switch or is activated a second time causing the door to close.
Electric Latch Retraction Exit Device Wiring

Change Factory Pre-Wiring from Illustration A to Illustration B (move GND to COM)

A)

B)

Electric Latch Retraction Exit Device Wiring

- Doors are normally closed and latched.
- Activating switch will retract exit device latch bolt and operator will open the door.
- The door will closer after hold open time delay has elapsed.
- Exit device allows egress at all times. Exit device allows egress during power failure.
- Contact Tech Support for other devices or manufacturer's instructions.

Electric Latch Retraction Exit Device Wiring for Smoke Ventilation - Blow Open Function

Change Factory Pre-Wiring from Illustration A to Illustration B (move GND to COM)

A)

B)

Electric Latch Retraction Exit Device Wiring - Blow Open

- Doors are normally closed and latched.
- Fire Alarm activation will retract exit device latch bolt and door operator will open door.
- Door will remain open until the Fire Alarm System has been reset.
- Door Operator's main power input must be wired into building's back-up power system.
- Exit device allows egress at all times. Exit device allows egress during power failure.

NOTE: This application must be approved by local (AHJ) authority having jurisdiction.
Radio Frequency Standard Function Wiring (can be ordered pre-wired to this RF wiring)

If Installing in the Field, change Factory Pre-Wiring from Illustration A to Illustration B (move NO to +24)

Radio Frequency Standard Function
- Doors are normally closed.
- Activating wireless switch or hand held wireless transmitter will open the door.
- The door will closer after hold open time delay has elapsed.
- Current draw at Power Outputs not to exceed 1.3 amps.

Radio Frequency Executive Function Wiring

If Installing in the Field, change Factory Pre-Wiring from Illustration A to Illustration B (move NO to +24)

Radio Frequency Executive Function
- Doors are normally closed and latched.
- Activating wireless switch or hand held wireless transmitter will open the door.
- The door will remain in indefinite hold open until wireless switch or hand held transmitter is activated a second time causing the door to close.
- Current draw at Power Outputs not to exceed 1.3 amps.
Vestibule Function Wiring

Using Factory Pre-Wiring

INSIDE DOOR

Inside Switch

Outside Switch

Vestibule Function Wiring

- Doors are normally closed and latched.
- Activating outside door switch will open the outside door.
 After the vestibule time delay has elapsed, a signal will be sent to the inside door which will open. Activating the inside door switch will open the inside door. After the vestibule time delay has elapsed, a signal will be sent to the outside door which will open. Both doors will close when the hold open time delay has elapsed.
- Activating the optional inside door switch located within the corridor will open the inside door only. This door will re-close after the hold open delay has elapsed.
- Activating the optional outside door switch located within the corridor will open the outside door only. This door will re-close after the hold open delay has elapsed.

Wall Switch, Card Reader, Key Switch, etc.
(Normally Open Momentary dry contacts)
585 Presence Detector Wiring on Single Door Opening

585 Presence Detector Wiring:
- Door is normally closed.
- Activating switch will open the door.
- The door will closer after hold open time delay has elapsed.
- If door is closed and 585 Presence Detector senses something in the opening, door will not open.
- If door is at open position and 585 Presence Detector senses something in the opening, door will not close.
- For use on a single door application only.

NOTE: Presence Detector and/or sensors CAN NOT be used to active opening cycle of door.

To activate presence detector functionality:
- On inverter, use up/down arrows to scroll to Page 1.
- Use left/right arrows to change to Page 2.
- Use up/down arrows to scroll to PDET Option.
- Use left/right arrows to change value from OFF to ON.
- Use instructions provided with 585 sensor to program and make any necessary adjustments to the sensor.

Cable supplied with 585 Sensor

585 Sensor Plug on top board - marked J510
Troubleshooting

Problem: The LED on my receiver is just flickering and I’m unable to program and/or it won’t work.

Solution: You have a push plate stuck or faulty transmitter. Disconnect each push plate until the LED goes out. If LED does not go out, remove each transmitter battery until it does. Replace the appropriate transmitter.

Problem: Receiver intermittently doesn’t receive the transmitter(s) signal.

Solution: You may extend the receiver antenna wire only in multiples of 6-3/4” (171), i.e. 6.75 x 4 = 27” (686) of extended antenna wire.

Push Plate Configuration

1. Before beginning, it is easiest to have already prepared the installation of the push plate.
2. Connect the wires from the transmitter to the NO and COM contacts of the push plate's switch.
3. Follow Steps 1 - 4 (Hand-Held Configuration); depress the push plate to activate the transmitter.
4. Attach the transmitter to the inside of the electrical box and complete the installation.

Hand-Held Configuration

1. Set dip switches to the receiver to the desired activation cycle (dip switch 1 - Toggle or Pulse and dip switch 2 - 0.5s or 10s hold.
2. Press either Learn w/ Delay Button or Learn w/o Delay Button on the receiver depending on the activation requirements (if delay learn is selected, adjust potentiometer to counterclockwise limit, 0 second delay). Red LED on receiver will flash. After learn cycle is complete, adjust potentiometer to desired delay time (0 - 30 sec).
3. Depress transmitter button repeatedly until Blue LED on the receiver illuminates (indicating reception of signal from transmitter).

NOTE: Repeat Steps 2 - 3 to program additional transmitters.
4. To test the system, depress transmitter button (Red LED on Transmitter will illuminate) and observe that the Blue LED illuminates on the receiver. This indicates that the relay has been activated.

Removing Transmitter Code(s)

Single Transmitter Code:
- Press both Delay and No Delay Buttons simultaneously until Red LED flashes once (approximately 1 second).
- Press transmitter button twice within 10 seconds and the transmitter code will be deleted.

All Transmitter Codes:
- Press and hold both Delay and No Delay Buttons simultaneously until Blue LED illuminates then release (approximately 10 seconds).

R1 Hand-Held Configuration

1. Set dip switches to the receiver to the desired activation cycle (dip switch 1 - Toggle or Pulse and dip switch 2 - 0.5s or 10s hold.
2. Press either Learn w/ Delay Button or Learn w/o Delay Button on the receiver depending on the activation requirements (if delay learn is selected, adjust potentiometer to counterclockwise limit, 0 second delay). Red LED on receiver will flash. After learn cycle is complete, adjust potentiometer to desired delay time (0 - 30 sec).
3. Depress transmitter button repeatedly until Blue LED on the receiver illuminates (indicating reception of signal from transmitter).

NOTE: Repeat Steps 2 - 3 to program additional transmitters.
4. To test the system, depress transmitter button (Red LED on Transmitter will illuminate) and observe that the Blue LED illuminates on the receiver. This indicates that the relay has been activated.

R2 Push Plate Configuration

1. Before beginning, it is easiest to have already prepared the installation of the push plate.
2. Connect the wires from the transmitter to the NO and COM contacts of the push plate's switch.
3. Follow Steps 1 - 4 (Hand-Held Configuration); depress the push plate to activate the transmitter.
4. Attach the transmitter to the inside of the electrical box and complete the installation.

R3 Removing Transmitter Code(s)

Single Transmitter Code:
- Press both Delay and No Delay Buttons simultaneously until Red LED flashes once (approximately 1 second).
- Press transmitter button twice within 10 seconds and the transmitter code will be deleted.

All Transmitter Codes:
- Press and hold both Delay and No Delay Buttons simultaneously until Blue LED illuminates then release (approximately 10 seconds).

R4 Troubleshooting

Problem: The LED on my receiver is just flickering and I’m unable to program and/or it won’t work.

Solution: You have a push plate stuck or faulty transmitter. Disconnect each push plate until the LED goes out. If LED does not go out, remove each transmitter battery until it does. Replace the appropriate transmitter.

Problem: Receiver intermittently doesn’t receive the transmitter(s) signal.

Solution: You may extend the receiver antenna wire only in multiples of 6-3/4” (171), i.e. 6.75 x 4 = 27” (686) of extended antenna wire.
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Issue Seen</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door closing too fast</td>
<td>1) Adjust Latch and/or Sweep valves on closer clockwise or 2) Decrease Closing Speed on controller (see page 12)</td>
</tr>
<tr>
<td>Door closing too slow</td>
<td>1) Adjust Latch and/or Sweep valves on closer counterclockwise or 2) Increase Closing Speed on controller (see page 12)</td>
</tr>
<tr>
<td>Door does not open to desired location</td>
<td>1) Repeat Home process (see page 10), 2) Increase Obst Delay, 3) Adjust Backcheck valve on closer counterclockwise, or 4) Decrease spring force on closer body (door must still close in event of power failure (see page 8)</td>
</tr>
<tr>
<td>Door does not reach fully opened position</td>
<td>1) Repeat Home process (see page 10), 2) Increase Obst Delay, 3) Adjust Backcheck valve on closer counterclockwise, or 4) Decrease spring force on closer body (door must still close in event of power failure (see page 8)</td>
</tr>
<tr>
<td>Door opens and closes repeatedly</td>
<td>Change 3-position switch from H/O to On</td>
</tr>
<tr>
<td>Motor is driving in the wrong direction</td>
<td>Change Mount (Push / Pull) on controller, reset Home process (see page 10), and Save Values</td>
</tr>
<tr>
<td>When door reaches open position, door drifts toward closed position</td>
<td>Increase Hold Speed on controller (see page 12) until door stops drifting</td>
</tr>
<tr>
<td>When door reaches open position, door drifts further open</td>
<td>Decrease Hold Speed on controller (see page 12) until door stops drifting</td>
</tr>
<tr>
<td>When door reaches open position, door bounces</td>
<td>Decrease Slow Speed on controller (see page 12)</td>
</tr>
<tr>
<td>When signal is received, operator tries to open door before auxiliary components are unlatched / retracted</td>
<td>1) Confirm latch devices are getting proper power, 2) Confirm latch devices are receiving power long enough to fully retract - adjust Latch Retraction on controller (see page 12) as needed, 3) If latch device is not retracting fast enough, increase Start Delay on controller (see page 12) to assure latch device has had sufficient time to fully retract before operator starts opening.</td>
</tr>
<tr>
<td>Values previously set on controller are changed after power removed from operator</td>
<td>Reset necessary values on controller (see page 12) and Save Values. Failure to Save Values will result in changes to the controller being lost when power is removed</td>
</tr>
<tr>
<td>Error message says "Short Circuit"</td>
<td>Turn off power to unit. Check wiring for short / cut.</td>
</tr>
<tr>
<td>Error message says "Over Voltage"</td>
<td>Check incoming power - line voltage has exceeded 145VAC</td>
</tr>
<tr>
<td>Error message says "Under Voltage"</td>
<td>Check incoming power - line voltage has dropped below 80VAC</td>
</tr>
<tr>
<td>Error message says "Aux1, Aux 2, or Aux 3 Stuck"</td>
<td>Disconnect Aux 1, 2, or 3 inputs and confirm error message goes away. If so, make sure input device is not stuck (sending constant signal). Controller has a 3 minute protection limit</td>
</tr>
<tr>
<td>Error message says "Comm Error"</td>
<td>Inverter must be replaced</td>
</tr>
<tr>
<td>Error message says "Presense Detect"</td>
<td>Unit has a presense detector attached and device has been activated</td>
</tr>
<tr>
<td>Error message says "Drive Disabled"</td>
<td>3-position switch is in the "Off" position</td>
</tr>
</tbody>
</table>
Removable Template

- Do not scale drawing.
- Left hand door shown.
- All dimensions given in inches (mm).
- Maximum frame reveal is 6-7/8" (175 mm) for this application.

Door Opening Angle

<table>
<thead>
<tr>
<th>Dim “A”</th>
<th>85°</th>
<th>90°</th>
<th>95°</th>
<th>100°</th>
<th>105°</th>
<th>110°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim “B”</td>
<td>4-1/8"</td>
<td>4-1/8"</td>
<td>3-1/2"</td>
<td>2-3/8"</td>
<td>2-0"</td>
<td>1-5/8"</td>
</tr>
</tbody>
</table>

1/4-20 Machine Screws or No. 14 Wood Screws (7 Places)

Door Frame Rabbet

Frame Stop/Soffit

7/8" For Concealed Wired Units Only (2 Places)

3/8 DIA. Sex Nuts (2 Places)

Do not scale drawing.

Left hand door shown.

All dimensions given in inches (mm).

Maximum frame reveal is 6-7/8" (175 mm) for this application.

Copyright © 2017 Yale Security Inc., an ASSA ABLOY Group company. All rights reserved. Reproduction in whole or in part without the express written permission of Yale Security Inc. is prohibited.

Page 24